3.141 \(\int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^2} \, dx\)

Optimal. Leaf size=277 \[ \frac{((1+3 i) A+(9+5 i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{16 \sqrt{2} a^2 d}-\frac{((1+3 i) A+(9+5 i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{16 \sqrt{2} a^2 d}+\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{((1-3 i) A-(9-5 i) B) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^2 d}-\frac{((1-3 i) A-(9-5 i) B) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^2 d}+\frac{(-B+i A) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2} \]

[Out]

(((1 + 3*I)*A + (9 + 5*I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(16*Sqrt[2]*a^2*d) - (((1 + 3*I)*A + (9 +
 5*I)*B)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(16*Sqrt[2]*a^2*d) + (((1 - 3*I)*A - (9 - 5*I)*B)*Log[1 - Sqr
t[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(32*Sqrt[2]*a^2*d) - (((1 - 3*I)*A - (9 - 5*I)*B)*Log[1 + Sqrt[2]*Sqr
t[Tan[c + d*x]] + Tan[c + d*x]])/(32*Sqrt[2]*a^2*d) + ((A + (5*I)*B)*Sqrt[Tan[c + d*x]])/(8*a^2*d*(1 + I*Tan[c
 + d*x])) + ((I*A - B)*Tan[c + d*x]^(3/2))/(4*d*(a + I*a*Tan[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.500545, antiderivative size = 277, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3595, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac{((1+3 i) A+(9+5 i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{16 \sqrt{2} a^2 d}-\frac{((1+3 i) A+(9+5 i) B) \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{16 \sqrt{2} a^2 d}+\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{((1-3 i) A-(9-5 i) B) \log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^2 d}-\frac{((1-3 i) A-(9-5 i) B) \log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )}{32 \sqrt{2} a^2 d}+\frac{(-B+i A) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^2,x]

[Out]

(((1 + 3*I)*A + (9 + 5*I)*B)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(16*Sqrt[2]*a^2*d) - (((1 + 3*I)*A + (9 +
 5*I)*B)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(16*Sqrt[2]*a^2*d) + (((1 - 3*I)*A - (9 - 5*I)*B)*Log[1 - Sqr
t[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])/(32*Sqrt[2]*a^2*d) - (((1 - 3*I)*A - (9 - 5*I)*B)*Log[1 + Sqrt[2]*Sqr
t[Tan[c + d*x]] + Tan[c + d*x]])/(32*Sqrt[2]*a^2*d) + ((A + (5*I)*B)*Sqrt[Tan[c + d*x]])/(8*a^2*d*(1 + I*Tan[c
 + d*x])) + ((I*A - B)*Tan[c + d*x]^(3/2))/(4*d*(a + I*a*Tan[c + d*x])^2)

Rule 3595

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[((A*b - a*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*a*f*
m), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d*n
) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\tan ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^2} \, dx &=\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}-\frac{\int \frac{\sqrt{\tan (c+d x)} \left (\frac{3}{2} a (i A-B)-\frac{1}{2} a (A-7 i B) \tan (c+d x)\right )}{a+i a \tan (c+d x)} \, dx}{4 a^2}\\ &=\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}+\frac{\int \frac{-\frac{1}{2} a^2 (A+5 i B)-\frac{3}{2} a^2 (i A+3 B) \tan (c+d x)}{\sqrt{\tan (c+d x)}} \, dx}{8 a^4}\\ &=\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}+\frac{\operatorname{Subst}\left (\int \frac{-\frac{1}{2} a^2 (A+5 i B)-\frac{3}{2} a^2 (i A+3 B) x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{4 a^4 d}\\ &=\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}+\frac{\left (\left (\frac{1}{16}+\frac{i}{16}\right ) ((1+2 i) A+(2-7 i) B)\right ) \operatorname{Subst}\left (\int \frac{1-x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{a^2 d}-\frac{((1+3 i) A+(9+5 i) B) \operatorname{Subst}\left (\int \frac{1+x^2}{1+x^4} \, dx,x,\sqrt{\tan (c+d x)}\right )}{16 a^2 d}\\ &=\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}+\frac{((1-3 i) A-(9-5 i) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{32 \sqrt{2} a^2 d}+\frac{((1-3 i) A-(9-5 i) B) \operatorname{Subst}\left (\int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{32 \sqrt{2} a^2 d}-\frac{((1+3 i) A+(9+5 i) B) \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{32 a^2 d}-\frac{((1+3 i) A+(9+5 i) B) \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{2} x+x^2} \, dx,x,\sqrt{\tan (c+d x)}\right )}{32 a^2 d}\\ &=\frac{((1-3 i) A-(9-5 i) B) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^2 d}-\frac{((1-3 i) A-(9-5 i) B) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^2 d}+\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}-\frac{((1+3 i) A+(9+5 i) B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{16 \sqrt{2} a^2 d}+\frac{((1+3 i) A+(9+5 i) B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{16 \sqrt{2} a^2 d}\\ &=\frac{((1+3 i) A+(9+5 i) B) \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )}{16 \sqrt{2} a^2 d}-\frac{((1+3 i) A+(9+5 i) B) \tan ^{-1}\left (1+\sqrt{2} \sqrt{\tan (c+d x)}\right )}{16 \sqrt{2} a^2 d}+\frac{((1-3 i) A-(9-5 i) B) \log \left (1-\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^2 d}-\frac{((1-3 i) A-(9-5 i) B) \log \left (1+\sqrt{2} \sqrt{\tan (c+d x)}+\tan (c+d x)\right )}{32 \sqrt{2} a^2 d}+\frac{(A+5 i B) \sqrt{\tan (c+d x)}}{8 a^2 d (1+i \tan (c+d x))}+\frac{(i A-B) \tan ^{\frac{3}{2}}(c+d x)}{4 d (a+i a \tan (c+d x))^2}\\ \end{align*}

Mathematica [A]  time = 2.35207, size = 243, normalized size = 0.88 \[ \frac{\sec (c+d x) (\cos (d x)+i \sin (d x))^2 (A+B \tan (c+d x)) \left (4 \sin (c+d x) (\sin (2 d x)+i \cos (2 d x)) ((3 A+7 i B) \sin (c+d x)+(5 B-i A) \cos (c+d x))-(1+i) (-\sin (2 c)+i \cos (2 c)) \sqrt{\sin (2 (c+d x))} \sec (c+d x) \left (((2+7 i) B-(1-2 i) A) \sin ^{-1}(\cos (c+d x)-\sin (c+d x))+((7+2 i) B-(2-i) A) \log \left (\sin (c+d x)+\sqrt{\sin (2 (c+d x))}+\cos (c+d x)\right )\right )\right )}{32 d \sqrt{\tan (c+d x)} (a+i a \tan (c+d x))^2 (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^2,x]

[Out]

(Sec[c + d*x]*(Cos[d*x] + I*Sin[d*x])^2*(4*(I*Cos[2*d*x] + Sin[2*d*x])*Sin[c + d*x]*(((-I)*A + 5*B)*Cos[c + d*
x] + (3*A + (7*I)*B)*Sin[c + d*x]) - (1 + I)*(((-1 + 2*I)*A + (2 + 7*I)*B)*ArcSin[Cos[c + d*x] - Sin[c + d*x]]
 + ((-2 + I)*A + (7 + 2*I)*B)*Log[Cos[c + d*x] + Sin[c + d*x] + Sqrt[Sin[2*(c + d*x)]]])*Sec[c + d*x]*(I*Cos[2
*c] - Sin[2*c])*Sqrt[Sin[2*(c + d*x)]])*(A + B*Tan[c + d*x]))/(32*d*(A*Cos[c + d*x] + B*Sin[c + d*x])*Sqrt[Tan
[c + d*x]]*(a + I*a*Tan[c + d*x])^2)

________________________________________________________________________________________

Maple [A]  time = 0.05, size = 294, normalized size = 1.1 \begin{align*}{\frac{7\,B}{8\,{a}^{2}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{2}} \left ( \tan \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{{\frac{3\,i}{8}}A}{{a}^{2}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{2}} \left ( \tan \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{{\frac{5\,i}{8}}B}{{a}^{2}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{2}}\sqrt{\tan \left ( dx+c \right ) }}-{\frac{A}{8\,{a}^{2}d \left ( \tan \left ( dx+c \right ) -i \right ) ^{2}}\sqrt{\tan \left ( dx+c \right ) }}-{\frac{7\,B}{4\,{a}^{2}d \left ( \sqrt{2}-i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}-i\sqrt{2}}} \right ) }-{\frac{{\frac{i}{4}}A}{{a}^{2}d \left ( \sqrt{2}-i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}-i\sqrt{2}}} \right ) }-{\frac{B}{2\,{a}^{2}d \left ( \sqrt{2}+i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}+i\sqrt{2}}} \right ) }-{\frac{{\frac{i}{2}}A}{{a}^{2}d \left ( \sqrt{2}+i\sqrt{2} \right ) }\arctan \left ( 2\,{\frac{\sqrt{\tan \left ( dx+c \right ) }}{\sqrt{2}+i\sqrt{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^2,x)

[Out]

7/8/d/a^2/(tan(d*x+c)-I)^2*tan(d*x+c)^(3/2)*B-3/8*I/d/a^2/(tan(d*x+c)-I)^2*tan(d*x+c)^(3/2)*A-5/8*I/d/a^2/(tan
(d*x+c)-I)^2*tan(d*x+c)^(1/2)*B-1/8/d/a^2/(tan(d*x+c)-I)^2*tan(d*x+c)^(1/2)*A-7/4/d/a^2*B/(2^(1/2)-I*2^(1/2))*
arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)-I*2^(1/2)))-1/4*I/d/a^2/(2^(1/2)-I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1
/2)-I*2^(1/2)))*A-1/2/d/a^2/(2^(1/2)+I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)+I*2^(1/2)))*B-1/2*I/d/a^2/(
2^(1/2)+I*2^(1/2))*arctan(2*tan(d*x+c)^(1/2)/(2^(1/2)+I*2^(1/2)))*A

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.94814, size = 1754, normalized size = 6.33 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/32*(2*a^2*d*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^4*d^2))*e^(4*I*d*x + 4*I*c)*log(1/4*((8*I*a^2*d*e^(2*I*d*x + 2
*I*c) + 8*I*a^2*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*A^2 - 2*A*B + I*B^2)/
(a^4*d^2)) + 8*(A - I*B)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - 2*a^2*d*sqrt((-I*A^2 - 2*A*B +
 I*B^2)/(a^4*d^2))*e^(4*I*d*x + 4*I*c)*log(1/4*((-8*I*a^2*d*e^(2*I*d*x + 2*I*c) - 8*I*a^2*d)*sqrt((-I*e^(2*I*d
*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*A^2 - 2*A*B + I*B^2)/(a^4*d^2)) + 8*(A - I*B)*e^(2*I*d*x
+ 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - a^2*d*sqrt((I*A^2 + 14*A*B - 49*I*B^2)/(a^4*d^2))*e^(4*I*d*x + 4*I
*c)*log(1/8*((a^2*d*e^(2*I*d*x + 2*I*c) + a^2*d)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*
sqrt((I*A^2 + 14*A*B - 49*I*B^2)/(a^4*d^2)) + I*A + 7*B)*e^(-2*I*d*x - 2*I*c)/(a^2*d)) + a^2*d*sqrt((I*A^2 + 1
4*A*B - 49*I*B^2)/(a^4*d^2))*e^(4*I*d*x + 4*I*c)*log(-1/8*((a^2*d*e^(2*I*d*x + 2*I*c) + a^2*d)*sqrt((-I*e^(2*I
*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*A^2 + 14*A*B - 49*I*B^2)/(a^4*d^2)) - I*A - 7*B)*e^(-2*I
*d*x - 2*I*c)/(a^2*d)) - 2*(2*(A + 3*I*B)*e^(4*I*d*x + 4*I*c) + (A + 5*I*B)*e^(2*I*d*x + 2*I*c) - A - I*B)*sqr
t((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-4*I*d*x - 4*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.23344, size = 166, normalized size = 0.6 \begin{align*} -\frac{\left (i + 1\right ) \, \sqrt{2}{\left (A - i \, B\right )} \arctan \left (-\left (\frac{1}{2} i - \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{8 \, a^{2} d} + \frac{\left (i - 1\right ) \, \sqrt{2}{\left (A - 7 i \, B\right )} \arctan \left (-\left (\frac{1}{2} i + \frac{1}{2}\right ) \, \sqrt{2} \sqrt{\tan \left (d x + c\right )}\right )}{16 \, a^{2} d} - \frac{3 i \, A \tan \left (d x + c\right )^{\frac{3}{2}} - 7 \, B \tan \left (d x + c\right )^{\frac{3}{2}} + A \sqrt{\tan \left (d x + c\right )} + 5 i \, B \sqrt{\tan \left (d x + c\right )}}{8 \, a^{2} d{\left (\tan \left (d x + c\right ) - i\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^2,x, algorithm="giac")

[Out]

-(1/8*I + 1/8)*sqrt(2)*(A - I*B)*arctan(-(1/2*I - 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/(a^2*d) + (1/16*I - 1/16)*s
qrt(2)*(A - 7*I*B)*arctan(-(1/2*I + 1/2)*sqrt(2)*sqrt(tan(d*x + c)))/(a^2*d) - 1/8*(3*I*A*tan(d*x + c)^(3/2) -
 7*B*tan(d*x + c)^(3/2) + A*sqrt(tan(d*x + c)) + 5*I*B*sqrt(tan(d*x + c)))/(a^2*d*(tan(d*x + c) - I)^2)